While climate-driven glacier change significantly impacts regional water resources, particularly the hydrological cycle, glacier elevation change is a key indicator of climate change. As a major glacier region in eastern Pamir, China, the Muztag Ata and Kongur Tagh region is not only a hot area for glacier studies, but also a part of the China-Pakistan Economic Corridor. It shows growing importance in glacier research. In this study, glacier elevation changes were derived from topographic maps, SRTM DEM and ASTER images from 1971 to 2014. Within its spatial extent (38°N–39°N, 74°40′E–75°40′E), the region covers 434 glaciers totaling an area of 998.8 km2. The resulted data, with a spatial resolution of 30 m, were stored in GeoTiff format in 32-bit floating point. To mitigate influences of the relative errors between DEMs from the generating procedures, we corrected these errors before estimating elevation change using the relation between error and terrain factor. We also evaluated the penetration depth of the C-band radar beam of SRTM into snow and ice. A statistical analysis of the residual error of elevation change in non-glacial areas indicates that the results have an overall accuracy of about 0.02~0.07 m a-1. The dataset can serve as the basis for investigating the region’s glacier volume change, providing statistical support for research on glacier mass balance. In addition, when used in combination with climatic and hydrological data, the dataset can help reveal the quantitative relationship between glaciers, climate and hydrology. It promotes a scientific understanding of the glaciers’ responding mechanism to climate changes, and the region’s water effects of glacial changes.